
Declarations and Types in the PVS Specification Language

Ben L. Di Vito

NASA Langley Research Center

Formal Methods Team

b.divito@nasa.gov
phone: (757) 864-4883

fax: (757) 864-4234

http://shemesh.larc.nasa.gov/people/bld

NASA Langley – NIA Short Course on PVS

27–30 November 2007

Declarations

Named entities are introduced in PVS by means of declarations

• User-defined language units such as constants, variables, types, and functions are

introduced through a series of declarations

• Examples:

feet_per_mile: nat = 5280

minute: TYPE = {m: nat | m < 60}

before, after: VAR minute

• Collections of related declarations are grouped together into PVS theories

• A set of predefined theories called the prelude is available as the user’s starting point

• Named items used in a declaration must have already been declared previously

– No forward references

– Note the order in the example above

• A declared entity is visible throughout the rest of the theory in which it is declared

– It may also be exported to other theories (variables excepted)

– Variables can be introduced using local bindings, with much more limited scope

Declarations and Types Nov 2007 — 1 / 23

Kinds of Declarations

PVS specification language allows a variety of top-level declarations

• Type declarations

• Variable declarations

• Constant declarations

• Recursive definitions

• Macros

• Inductive/coinductive definitions

• Formula declarations

• Judgements

• Conversions

• Library declarations

• Auto-rewrite declarations

Declarations and Types Nov 2007 — 2 / 23

Theories

Specifications are modularized in PVS by organizing them into theories

• Declarations within a theory may freely use earlier declarations within that same theory

• Declarations from other theories may be used when properly imported

IMPORTING sqrt, real_sets[nonneg_real]

– Default rule is that all declared entities (other than variables) are exportable

• Theories may be parameterized so that specialized instances can be created

– Theory parameters include constants and types

– Constitutes a powerful mechanism for creating generic theories that are readily reused

• Named items imported from different theories may clash, requiring name resolution

• General form:

My_Theory [<parameters>]: THEORY
BEGIN

<assuming part>
<declaration>

. . .
END My_Theory

Declarations and Types Nov 2007 — 3 / 23

Variables

Logical variables in PVS are used to express other declared entities

• Basic form of a variable declaration:

name_1,...,name_n: VAR <data type>

• Scope extends to end of theory

• Variables in PVS are not the same concept as programming language variables

– PVS variables are logical or mathematical variables

– They range over a (possibly infinite) set of values

– No notion of program state is inherent in these variables

• Variables are not exportable outside of their containing theories

– Each theory declares its own variables

Declarations and Types Nov 2007 — 4 / 23

Local Bindings

Local variables are also possible in PVS

• Local bindings are embedded within declarations for larger containing units:

delta_time(current: system_time,
previous: system_time): system_time = . . .

• The scope of such local variables is limited to the containing unit

• Local bindings can shadow previous bindings or declarations in the containing scope

• Local variables or bindings may be used in several PVS constructs:

– Quantifiers

– LAMBDA expressions

– LET and WHERE expressions

– Type expressions

Declarations and Types Nov 2007 — 5 / 23

Constants

Named constants may be introduced as needed for use in other declarations

• Basic forms of a constant declaration:

name: <type> = <value>

name: <type>

• A constant may be either:

– Interpreted (having a definite value) or

– Uninterpreted (value left unspecified)

• Practical consequences of this choice:

– When the value is specified, it is available for use in proofs

– If unspecified, anything proved using the constant will be true for any legitimate value

it could have

• Declaring a constant requires that its type be nonempty

• Like variables, constants are not the same concept as programming language constants

• Function declarations are actually a special kind of constant declaration

– A constant of a function type in the higher-order logic framework of PVS

Declarations and Types Nov 2007 — 6 / 23

Type Concepts

PVS provides a rich set of type capabilities

• A type is considered to be a (possibly infinite) set of values

• Types may be declared in one of several ways:

– As uninterpreted types with no assumed characteristics

– As instances of predefined or user-defined types

– Through mechanisms for creating types for structured data objects

– Through a mechanism for creating subtypes

– Through a mechanism for creating abstract data types

• Higher-order logic plays a big role in the type system

– Function types are used extensively to model common concepts such as arrays

• Interpreted types are declared using type expressions

• PVS uses structural equivalence not name equivalence

Declarations and Types Nov 2007 — 7 / 23

Predefined Types

PVS provides a set of basic predefined types for declaring constants and variables as well as

for deriving subtypes

• Boolean values: bool

– Includes the constants true and false

– Accompanied by the usual boolean operations

• Integers: int and nat

– int includes the full set of integers from negative to positive infinity

– nat includes the nonnegative subset of int

– Accompanied by the usual constants and operations

– int and nat also have various subtypes declared in the prelude

– Commonly used subranges:

below(8) is the subtype of nat having values 0, . . . , 7

upto(8) is the subtype of nat having values 0, . . . , 8

above(8) is the subtype of int having values 9, 10, . . .

upfrom(8) is the subtype of int having values 8, 9, . . .

Declarations and Types Nov 2007 — 8 / 23

Predefined Types (Cont’d)

• Rational numbers: rational

– Axiomatizes the true mathematical concept of rationals

– Rational constants sometimes used to approximate real constants

• Real numbers: real

– Axiomatizes the true mathematical concept of reals

– Different from the programming notion of floating point numbers

– Axioms for real number field taken from Royden

• All axioms and derived properties for the predefined types are extensively enumerated and

documented in the prelude

– The prelude itself is written in PVS notation

– Prelude extensions are also possible

Declarations and Types Nov 2007 — 9 / 23

Uninterpreted Types

Types may be named and left unspecified

• Basic form of an uninterpreted type declaration:

name: TYPE

– Identifies a named type without assuming anything about the values

– Only operation allowed on objects of this type is comparison for equality

• Alternate form of uninterpreted type:

name: NONEMPTY_TYPE or name: TYPE+

– Difference is the assumption of nonemptiness

• One uninterpreted type may be a subtype of another:

name_2: FROM NONEMPTY_TYPE name_1

– Some subset of name_1’s values may be used in the new type

Declarations and Types Nov 2007 — 10 / 23

Predicate Subtypes

Often we need to derive types as subsets of other types

• PVS allows predicate subtypes to be declared directly:

posint: TYPE = {n: int | n > 0}

index: TYPE = {n: int | 1 <= n AND n <= num_units}
CONTAINING 1

fraction: TYPE = {x: real | -1 < x AND x < 1}

oddint: TYPE = {n: int | odd?(n)}

• All properties of the parent type are inherited by the subtype

• A constraining predicate is provided to identify which elements are contained in the subset

• A CONTAINING clause may be added to show nonemptiness

• Type correctness conditions (TCCs) may be generated to impose a nonemptiness

requirement

Declarations and Types Nov 2007 — 11 / 23

Enumeration Types

The familiar concept of enumeration type is available in PVS

• Basic declarations:

color: TYPE = {red, white, blue}

flight_mode: TYPE = {going_up, going_down}

• Value identifiers become constants of the type

– The constants are considered distinct

– Axioms are generated that state these inequalities

– Example: red /= white

– An inclusion axiom states that the explicit constants exhaust the type

• Constant identifiers may be used in expressions

Declarations and Types Nov 2007 — 12 / 23

Function Types

A key feature of PVS and its style of formalization is the function type capability

• Functions types are declared by explicitly identifying domain and range types:

status: TYPE = [LRU_id -> bool]

operator: TYPE = [int, int -> int]

operator: TYPE = FUNCTION[int, int -> int]

control_bank: TYPE = ARRAY[LRU_id -> control_block]

• Reserved words FUNCTION and ARRAY provide alternate forms with equivalent meaning

• A value of a function type is a mathematical object: any legitimate function having the

required signature

– Values may be constructed using LAMBDA expressions

– This feature is fully higher order: domain and range types may themselves be function

types

• Function types make the language very expressive and allow some rather sophisticated

mathematics to be formalized directly

Declarations and Types Nov 2007 — 13 / 23

Function Types (Cont’d)

Functions types are the primary means in PVS of modeling structured data objects such as

vectors and arrays

• Consider an array type in a procedural programming language notation:

memory: ARRAY address OF word

• This would be represented in PVS with a function type:

memory: [address -> word]

• Array access in a programming language is typically denoted M[a]

– In PVS we use function application: M(a)

Declarations and Types Nov 2007 — 14 / 23

More on Predicates and Types

Certain types involving predicates are treated as special cases

• A predicate type can be declared explicitly or using a shorthand:

nat_pred: TYPE = [nat -> bool]

nat_pred: TYPE = pred[nat]

nat_pred: TYPE = setof[nat]

• Certain predicate subtypes also have a shorthand:

prime?(n: nat): bool = ...

primes: TYPE = {n: nat | prime?(n)}

primes: TYPE = (prime?)

• Personal taste dictates which way to declare types

– Explicit method for novices vs. shorthand for experts

– Shorthand notations pop up a lot, however

– Need to be able to recognize them

Declarations and Types Nov 2007 — 15 / 23

Tuple Types

Structured data objects in the form of tuples can be modeled using tuple types

• Declarations include types for each element:

pair: TYPE = [int, int]

position: TYPE = [real, real, real]

two_bits: TYPE = [bool, bool]

• Instances are easily specified:

(1, 2, 3)

• Tuple elements are organized positionally

(1, 2) 6= (2, 1)

• Elements are extracted using special notation or predefined projection functions

Declarations and Types Nov 2007 — 16 / 23

Record Types

Similarly structured data objects can be modeled using record types

• Declarations include types for each element:

pair: TYPE = [# left: int, right: int #]

vector: TYPE = [# x: real, y: real, z: real #]

ctl_block: TYPE = [# is_active: bool,
timestamp: time_of_day,
status: operating_mode

#]

• Instances are easily specified:

(# x := 1, y := 2, z := 3 #)

• Record elements are organized by keyword

(# left := 1, right := 2 #) =
(# right := 2, left := 1 #)

• Elements are extracted using special notation or function application based on the

element names

Declarations and Types Nov 2007 — 17 / 23

Other Type Concepts

Two additional typing mechanisms are available in PVS

• Abstract data types are introduced by giving a scheme for defining constructors and

access functions

list[base: TYPE]: DATATYPE
BEGIN

null: null?
cons (car: base, cdr: list) : cons?

END list

• This declaration causes axioms and derived functions to be generated based on the

DATATYPE scheme

– Example: induction axiom usable within the prover

• CODATATYPE is also available for coalgebraic formalization

Declarations and Types Nov 2007 — 18 / 23

Other Type Concepts (Cont’d)

• Dependent types offer another powerful typing concept:

date1: TYPE = [yr: year, mon: month,
{d: nat | d <= days(mon, yr)}]

date2: TYPE = [# yr: year, mon: month,
day: {d: nat | d <= days(mon, yr)} #]

• These declarations introduce a tuple and a record structure where the type of component

day depends on the values of month and year that precede it in the structure

• Allows complex data type dependencies to be modeled, obviating the messy specifications

that would be necessary without this feature

• Can also be used in other contexts such as function arguments

ratio(x, y: real, z: {z: real | z /= x}): real =
(x - y) / (x - z)

• TCCs are generated as needed to ensure well-formed values

Declarations and Types Nov 2007 — 19 / 23

Lexical Rules

PVS has a conventional lexical structure

• Comments begin with ‘%’ and go to the end of the line

• Identifiers are composed of letters, digits, ‘?’, and ‘ ’

– They must begin with a letter

– They are case sensitive

• Integers are composed of digits only

• Rationals can be written as ratios or with decimal notation

– 2.718 is equivalent to 2718/1000

– Leading zeros are required: 0.866

– No floating point formats

• Strings are enclosed in double quotes

• Reserved words are not case sensitive

– Examples: FORALL exists BEGIN end

• Many special symbols

– Examples: [# #] -> (: :) >=

Declarations and Types Nov 2007 — 20 / 23

Examples of Declarations

major_mode_code: TYPE = nat
mission_time: TYPE = real

GPS_id: TYPE = {n: nat | 1 <= n & n <= 3}

receiver_mode: TYPE = {init, test, nav, blank}
AIF_flag: TYPE = {auto, inhibit, force}

M50_axis: TYPE = {Xm, Ym, Zm}

IMPORTING vectors[M50_axis]

M50_vector: TYPE = vector[M50_axis]

position_vector: TYPE = M50_vector
velocity_vector: TYPE = M50_vector

GPS_positions: TYPE = [GPS_id -> position_vector]
GPS_velocities: TYPE = [GPS_id -> velocity_vector]

GPS_predicate: TYPE = [GPS_id -> bool]

GPS_times: TYPE = [GPS_id -> mission_time]

Declarations and Types Nov 2007 — 21 / 23

Sample Declarations (Cont’d)

vectors [index_type: TYPE]: THEORY
BEGIN

vector: TYPE = [index_type -> real]

i,j,k: VAR index_type
a,b,c: VAR real
U,V: VAR vector

zero_vector: vector = LAMBDA i: 0
vector_sum(U, V): vector = LAMBDA i: U(i) + V(i)
vector_diff(U, V): vector = LAMBDA i: U(i) - V(i)
scalar_mult(a, V): vector = LAMBDA i: a * V(i)

. . .

END vectors

Declarations and Types Nov 2007 — 22 / 23

Sample Declarations (Cont’d)

matrices [row_type, col_type: TYPE]: THEORY
BEGIN

vector: TYPE = [col_type -> real]
matrix: TYPE = [row_type -> vector]

vector_2: TYPE = [row_type -> real]
matrix_2: TYPE = [col_type -> vector_2]

i: VAR row_type
j: VAR col_type
a,b,c: VAR real
U,V: VAR vector
M,N: VAR matrix

. . .

END matrices

Declarations and Types Nov 2007 — 23 / 23

